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We study the properties of an arbitrary microswimmer towing a passive load through a viscous liquid. The
simple close-form expression for the dragging efficiency of a microswimmer dragging a distant load is found,
and the approximation for finite mutual proximity is derived. We show that, while the swimmer can be
arbitrarily efficient, the dragging efficiency is always bounded from above. It is also demonstrated, that
opposite to Purcell’s assumption �E. M. Purcell, Proc. Natl. Acad. Sci. U.S.A. 94, 11307 �1997��, the hydro-
dynamic coupling can “help” the propeller to tow the load. We support our conclusions by rigorous numerical
calculations for the rotary swimmer, towing a spherical cargo positioned at a finite distance.
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In recent years there has been an increasing interest in
propulsion at low Reynolds numbers, both theoretically
�1–10� and experimentally �11�. These and other works have
improved our understanding of the basic properties of loco-
motion on small scales. However, it is not sufficient to un-
derstand the mechanisms and properties of free microswim-
mers alone—it is necessary to estimate the performance of
these swimmers as propellers that tow a useful cargo, e.g., a
therapeutic load or miniature camera. This question, which
attracted only limited attention, had already been shown to
have some interesting answers: Purcell �1� had studied the
particular case of a rotating helix pushing a spherical particle
under the assumption of negligible hydrodynamic interac-
tions. He showed that due to the structure of a grand-
resistance matrix, which connects the force and torque on a
body to its translational and angular velocities, the optimal
rotating propeller should have the same size as the load.

In this paper we address arbitrary shaped swimmers and
loads, and investigate the effect of their mutual hydrody-
namic interaction on the performance of the swimmer as a
load propeller. We find that, while propellers that can enclose
a load within may theoretically have arbitrarily high effi-
ciency �consider, for instance, the “treadmiller” �8��, the
dragging efficiency of a swimmer towing a remote load is
always bounded from above, and there is an optimal
propeller-load size ratio, which depends on the propeller ef-
ficiency and their mutual proximity. We also show, that in
contrast to Purcell’s assumption �1�, there are cases when
hydrodynamic coupling between the load and the propeller
enhances the dragging efficiency, and also provide a criterion
for the optimal cargo position. Finally, we support our theory
by numerical calculations for a rotary propeller towing a
spherical cargo.

Let us consider an arbitrary microswimmer �i.e., a propel-
ler� dragging a distant load. In this case, we can neglect the
mutual hydrodynamic interaction and calculate the dragging
efficiency as

�d =
KlVd

2

Pd
, �1�

where Kl is the resistance coefficient of the load �14�, Vd is
the dragging velocity, and Pd is the rate-of-work expended
by the swimmer to drag the load with velocity Vd. We also
define the propeller’s efficiency in the same fashion,

�s =
KsVs

2

Ps
,

where Ks is the swimmer’s resistance coefficient, Vs is the
speed of the unloaded propeller �at the point where the load
is anchored�, and Ps is the power expended in swimming
without load.

Note that in a general case of the swimmer propelled by a
sequence of geometrically nonreciprocal periodic strokes
�e.g., three-link �4� or N-link �5� Purcell’s swimmer, surface
deformations �2,3�, three-sphere swimmer �6�, push-me-
pully-you �7�, etc.�, the swimming efficiency is convention-
ally defined using stroke-averaged quantities �12�. However,
since max�KsVs

2 / Ps �� Ks�Vs�2 / �Ps� �where � � stands for the
average over a stroke period and the maximum is taken over
the stroke period� the maximum of Eq. �1� over a stroke
period is an upper bound for the conventional efficiency. In
the case of a swimmer propelled without the shape change
�e.g., rotating flagella �1�, treadmiller �8�, or twirling torus
�10��, the two definitions coincide. They are also practically
equivalent for swimmers performing small-amplitude
strokes, with Ks	const. Also, note that Eq. �1� is not just the
standard swimming efficiency �12� rewritten for “swimmer
�load” as a new swimmer, since we aim to compare the
rate-of-work expended in dragging the load by the propeller
to that spent by an external force.

We will now calculate the dragging efficiency for a swim-
mer characterized by a resistance coefficient Ks and swim-
ming efficiency �s, dragging a load characterized by a resis-
tance coefficient Kl, which we will assume are both not
rotating �it is known �3� that a rotating swimmer is less effi-
cient than a nonrotating one�. By Lorentz reciprocity �13�, if
�v j ,� jk� and �v j� ,� jk� � are the velocity and stress fields for two*lisha@tx.technion.ac.il
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solutions of the Stokes equations � j�ij =0 in fluid domain �
then



��

vi��ijdSj = 

��

vi�ij�dSj . �2�

Using Eq. �2� with �vi ,�ij� being the velocity and the stress
fields for a swimmer dragging a load, and �vi� ,�ij� � being the
velocity and stress fields for the “unloaded” swimmer and
the load codragged by the external force with the swimmer’s
velocity, we readily obtain

Pd = Ps+l − �Vs − Vd�Fs+l. �3�

Here Pd is the power expended by the swimmer to drag the
load, Ps+l is the power dissipated by viscosity in the case of
the unloaded swimmer and the load codragged by the exter-
nal force, Vs is the velocity of the free swimmer, Vd is the
dragging velocity, and Fs+l is the force required to tow the
load with velocity Vs. Vd can be found by equating the sum
of the viscous drag forces on the swimmer and the load to
zero. Exploiting the linearity of Stokes equation and neglect-
ing hydrodynamic interaction, we obtain

Vd =
VsKs

Ks + Kl
. �4�

As expected, Vd goes to zero for infinity large load and to the
swimmer velocity for a vanishingly small load. Neglecting
hydrodynamic interaction, we can use Fs+l=−VsKl and Ps+l
= Ps+Vs

2Kl, that together with Eq. �4� and dragging power
reads

Pd = Ps + Vs
2 KlKs

Kl + Ks
. �5�

For small loads, Kl�Ks, Eq. �5� gives the power of the free
swimmer plus the power of dragging the load, and for large
loads, Kl�Ks, this gives the power of an anchored swimmer
�i.e., a “pump” �9��. Substituting Eq. �3�, the swimmer effi-
ciency and Eq. �4� into Eq. �1� gives

�d =
r

�r + 1�� r + 1

�s
+ r� , �6�

where r=Kl /Ks. The dependence of the dragging efficiency
�d on �s and r is plotted in Fig. 1. Equation �6� shows that
unlike the swimming efficiency, which, for some swimmers,
can be arbitrarily high �7,8�, the dragging efficiency is

bounded by �d�
1

r+1 	1 even for �s=
. �The fact that the
dragging efficiency must have an optimum can be seen from
a simple scaling argument: for Kl→0, the dragging power
reaches linearly to zero, since the dragging speed is constant
�equal to the swimmer speed�, while the power used by the
swimmer is not zero, so �→0. For Kl→
, the power used
by the swimmer to tow the cargo is, again, not zero �equal to
the power of the “pump”�, and the dragging speed �4� van-
ishes similar to 1 / Kl , so the numerator of Eq. �1� goes to
zero. Thus, �d vanishes at both limits Kl→0 and at Kl→
,
and it, therefore, must have a maximum at some finite Kl
�15��. This means that enclosing a cargo within the swimmer
can be much more efficient than towing a remote one, and
that there is an optimal swimmer size for any swimming
technique �including swimming techniques in which r is
varying periodically�. As one might expect, �d is a growing
function of �s. However, while for an inefficient propeller
�such as a rotating helix� the optimal size is about the same
as the load size, the efficient swimmer with �s�1 �e.g., push
me pull you �7�� will be efficient as the propeller only if it is
much larger than the load. Thus, the naive intuition saying
that the swimmer’s efficiency alone controls the dragging
efficiency is not always right: in some cases a less efficient
but bigger propeller is advantageous.

Now let us estimate the effect of hydrodynamic interac-
tion between the propeller and the passive cargo separated by
distance d. For finite separation distance it is no longer valid
to assume that Fs+l=−VsKl. However, the force must still be
linear in the dragging velocity and we can write Fd=�lKlVd.
In the same way, the force on the swimmer must be propor-
tional to the changes in the velocity, so we will denote it by
Fs=−�s�Vs−Vd�Ks. Since the forces must still sum up to
zero, the dragging velocity is

Vd =
VsKs

Ks +
�l

�s
Kl

. �7�

Comparing the velocity in Eq. �7� to that with no hydrody-
namic interaction �4�, it can be readily seen that the deviation
between the two depends on the ratio �l / �s : if �l / �s �1 the
velocity will be lower than that in Eq. �4�, and if �l / �s 	1
the velocity will be higher than the infinite distance case.
Since generally �s ,�l	1 �13�, and for asymmetric configu-
rations the resistance coefficient of the larger object will be
almost constant, we can conclude that a large swimmer will
drag faster when positioned close to the load, while a small
swimmer will drag faster when located far from the load.

Assuming that the separation distance is large enough, so
d�max�Rl ,Rs�, where Rl and Rs are the hydrodynamic radii
of the load and the propeller, respectively, we can now esti-
mate the power needed for the swimmer to drag the cargo: it
is known �9� that for any swimmer Ps= Pp− Pg, where Pp is
the power needed by the pump, i.e., the anchored swimmer,
Ps is the power needed by the swimmer when it is swimming
freely and Pg is the power needed to drag a “frozen” swim-
mer with the swimming velocity. If we use this relation by
treating the swimmer plus the load as a modified swimmer,
we can estimate the power needed to drag the load. In this
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FIG. 1. �Color online� The dragging efficiency, �d, as function
of the propeller’s efficiency �s and the size ratio Kl /Ks.
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case, Pg is just the power needed to drag both the load and
the �frozen� swimmer with velocity Vd provided by Eq. �7�,
which is

Pg = Pg�s� �s

Kl

Ks

�l

�s
+ 1� ,

where Pg�s�=Vs
2Ks is the power needed to drag the immobile

swimmer. As an approximation, we will assume that the
power expanded by the pump does not depend on the prox-
imity of the load, since Pp= Pp�s�+O��R / d �2� �Pp�s� is the
power expanded by the pump when the load is absent�. To-
gether, this gives

Pd = Ps + Vs
2Ks1 −

�s

Kl

Ks

�l

�s
+ 1� , �8�

where Ps is the power expended by the swimmer when the
load is absent. Obviously, Pd� Ps and the equality holds
only when Kl=0.

Substitution of Eqs. �8� and �7� in Eq. �1� yields

�d =
r

���lr

�s
+ 1��1 +

1

�s
� − �s���lr

�s
+ 1� , �9�

where r=Kl /Ks. For �s=�l=1 Eq. �9� reduces to Eq. �6�, as
anticipated. Comparing the efficiency in Eq. �9� to that in Eq.
�6�, one can conclude that in cases where �l / �s �1 �i.e., the
swimmer is smaller than the load�, the efficiency is lower
when the hydrodynamic coupling is not negligible, and it
would be better separated from the load. If the swimmer is
much bigger than the load, which implies �s�1 and
�l / �s 	1, the efficiency is higher than in the case with no
coupling. Thus a propeller bigger than the load should be
positioned closer to the load, opposite to Purcell’s assump-
tion �1�. Equation �9� also tells us that the efficiency is
bounded by �s / �l , which can theoretically be greater than 1
for a large propeller towing a small load. However, we could
not find such an example.

We can now estimate �s and �l as functions of d, using the
Oseen tensor �13�. As the first order approximation, we will
assume both the swimmer and the load can be modeled as
spheres with hydrodynamic radii Rs= Ks / 6� and
Rl= Kl / 6� , respectively �16�. In this case, it can
be readily shown �13� that for d�max�Rl ,Rs�,

�s 	
2�2d2 − 3dRl�
4d2 − 9RlRs

, �l 	
2�2d2 − 3dRs�
4d2 − 9RlRs

.

Substituting these expressions into Eqs. �7� and �9� gives the
leading approximation for the dragging speed and efficiency,
respectively, as a function of dimensionless proximity �
=d /Rs and the size ratio r. Expanding the resulting expres-
sion for the dragging efficiency for small 1

� gives

�d 	 �d�
� +
3�d�
�

2

�s�
�1 − �1 + �s�r2� + ¯ ,

where �d�
� corresponds to the no-hydrodynamic-interaction
approximation for the dragging efficiency �6�. The 1 /� term
in the above expansion shows that for r�

1
�1+�s

the dragging
is retarded in comparison to the infinite separation result �6�,
i.e., �d	�d�
�, while for r	

1
�1+�s

, the dragging is enhanced
due to the hydrodynamic coupling, as �d��d�
�. Interest-
ingly, r= 1

�1+�s
corresponds to the maximum of �d�
�. How-

ever, it is not the optimum of �d, which shifts to higher
values at smaller r’s.

FIG. 2. �Color online� Schematic of the necklacelike propeller
towing a spherical load. The arrows show the direction of the rota-
tion of spheres in the propeller; the propeller is pushing the load in
front of it.
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FIG. 3. �Color online� Numerical results for the “necklace-
shaped” propeller made of eight corotating spheres of radius a
�Vs /a��0.316,�s=0.0339,Rs=3.083a�, towing a spherical load of
variable size located at d*=0 �magenta, a�, d*=a �blue, b�,
d*=4a �red, c� and d*=10a �yellow, d�; the solid line e corresponds
to the infinite-separation result �4�; the dashed lines are the far-field
approximations for d*=10a. �a� The scaled dragging speed, Vd /a�;
�b� The dragging efficiency, �d.
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We shall now test the proposed theory for the load
dragged by a rotary propeller. Imagine the necklacelike ring
�see Fig. 2� of Np=8 nearly touching rigid spheres �separated
by the distance of 0.05a� of radius a. The necklace lies in the
xy plane and in a cylindrical polar coordinate system
�z ,r ,��, each sphere rotates at the constant angular velocity
Ω=�e�, which, in the absence of external forces, causes the
necklace to swim along the normal to the plane of the neck-
lace in the positive z direction �10�. Performance of this
swimmer as a cargo propeller is tested for a spherical particle
positioned at arbitrary distance along the z axis �17�. The
distance that separates the plane of the propeller �z=0� and
the load’s surface is denoted by d*. We use the method of
Ref. �10� and construct the rigorous solution of the Stokes
equations as superposition of Lamb’s spherical harmonic ex-
pansions �13�. The no-slip conditions at the surface of all
spheres are enforced via the direct transformation between
solid spherical harmonics centered at origins of different
spheres. The accuracy of the calculations is controlled by the
number of spherical harmonics, L, retained in the series. The
truncation level of L�7 was found to be sufficient for all
configuration to achieve an accuracy of less than 1%. The
dragging efficiency �1� for this particular swimmer reads
�d= KlVd

2 / NpT� , where T is a hydrodynamic torque exerted
on each sphere of the propeller towing the load. The values
of Kl, T, and Vd are determined numerically and the resulting
dragging speed Vd /a�, and efficiency, �d, are plotted vs the
size ratio r in Figs. 3�a� and 3�b�, respectively. The
agreement with the far-field asymptotic results �7� and �9�
�via �=d* /Rs+r� is excellent for small loads �r	1� even at

moderate proximity of d*=10a �i.e., ��3.24�. It can be
readily seen that there is an optimal swimmer-load size ratio
in all cases. Interestingly, Fig. 3�a� shows that, while for
moderate separation the dragging velocity decays with the
increase in the load size, at close proximity it may actually
become higher than the velocity of the unloaded swimmer.
This is a direct consequence of Eq. �7�, which does not as-
sume large separation: the fluid velocity in the center of the
“necklace” is larger than the swimming speed. This means
that in order to pull a load positioned at d*=0 with the swim-
mer’s speed, the applied force must act in the direction op-
posite to that of the velocity, so that �l	0 and Vd�Vs. The
numerical results confirm the qualitative dependencies aris-
ing from the far-field theory: there is a critical size-ratio rcr
�weakly dependent on �� such that for r	rcr the dragging
efficiency is higher than the corresponding �d�
� and for
r�rcr the efficiency is lower than �d�
�; at moderate separa-
tions rcr→ 1 /�1+�s as expected from the far-field analysis.
The discrepancy between the asymptotic and the numerical
results is only observed at r�1, where the assumption
� / r �1 is no longer valid.

To conclude, we investigated the dragging efficiency of an
arbitrary swimmer towing a cargo at low Reynolds numbers.
It was demonstrated that there is an optimal hydrodynamic
size ratio of the propeller and the cargo. The dragging effi-
ciency and the size ratio at the optimum depend upon the
propeller-load mutual proximity.
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